Package: GGMridge 1.4
GGMridge: Gaussian Graphical Models Using Ridge Penalty Followed by Thresholding and Reestimation
Estimation of partial correlation matrix using ridge penalty followed by thresholding and reestimation. Under multivariate Gaussian assumption, the matrix constitutes an Gaussian graphical model (GGM).
Authors:
GGMridge_1.4.tar.gz
GGMridge_1.4.zip(r-4.5)GGMridge_1.4.zip(r-4.4)GGMridge_1.4.zip(r-4.3)
GGMridge_1.4.tgz(r-4.4-any)GGMridge_1.4.tgz(r-4.3-any)
GGMridge_1.4.tar.gz(r-4.5-noble)GGMridge_1.4.tar.gz(r-4.4-noble)
GGMridge_1.4.tgz(r-4.4-emscripten)GGMridge_1.4.tgz(r-4.3-emscripten)
GGMridge.pdf |GGMridge.html✨
GGMridge/json (API)
NEWS
# Install 'GGMridge' in R: |
install.packages('GGMridge', repos = c('https://sth1402.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 months agofrom:c01a137a5e. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 18 2024 |
R-4.5-win | OK | Nov 18 2024 |
R-4.5-linux | OK | Nov 18 2024 |
R-4.4-win | OK | Nov 18 2024 |
R-4.4-mac | OK | Nov 18 2024 |
R-4.3-win | OK | Nov 18 2024 |
R-4.3-mac | OK | Nov 18 2024 |
Exports:EM.mixturegetEfronpksStatlambda.cvlambda.pcut.cvlambda.pcut.cv1lambda.TargetDne.lambda.cvR.separate.ridgescaledMatsimulateDatastructuredEstimatetransFisher