Package: DynTxRegime 4.15
DynTxRegime: Methods for Estimating Optimal Dynamic Treatment Regimes
Methods to estimate dynamic treatment regimes using Interactive Q-Learning, Q-Learning, weighted learning, and value-search methods based on Augmented Inverse Probability Weighted Estimators and Inverse Probability Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B., Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.
Authors:
DynTxRegime_4.15.tar.gz
DynTxRegime_4.15.zip(r-4.5)DynTxRegime_4.15.zip(r-4.4)DynTxRegime_4.15.zip(r-4.3)
DynTxRegime_4.15.tgz(r-4.4-any)DynTxRegime_4.15.tgz(r-4.3-any)
DynTxRegime_4.15.tar.gz(r-4.5-noble)DynTxRegime_4.15.tar.gz(r-4.4-noble)
DynTxRegime_4.15.tgz(r-4.4-emscripten)DynTxRegime_4.15.tgz(r-4.3-emscripten)
DynTxRegime.pdf |DynTxRegime.html✨
DynTxRegime/json (API)
NEWS
# Install 'DynTxRegime' in R: |
install.packages('DynTxRegime', repos = c('https://sth1402.r-universe.dev', 'https://cloud.r-project.org')) |
- bmiData - Adolescent BMI dataset
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 months agofrom:8b2d0558cf. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win | OK | Nov 04 2024 |
R-4.5-linux | OK | Nov 04 2024 |
R-4.4-win | OK | Nov 04 2024 |
R-4.4-mac | OK | Nov 04 2024 |
R-4.3-win | OK | Nov 04 2024 |
R-4.3-mac | OK | Nov 04 2024 |
Exports:bowlbuildModelObjSubsetCallclassifcoefcvInfoDTRstepearlestimatorfitObjectgeneticiqLearnFSCiqLearnFSMiqLearnFSViqLearnSSoptimalClassoptimalSeqoptimObjoptTxoutcomeowlplotprintpropenqLearnqqplotregimeCoefresidualsrwlsdshowsummary