
modelObj: A Model Object Framework for

Regression Analysis

Shannon T. Holloway

November 8, 2024

Abstract

It is becoming common practice for researchers to disseminate new
statistical methods to the broader research community by develop-
ing and releasing R packages that implement their methods. Often,
methods are developed on the framework of traditional regression. To
simplify software development, researchers and developers often make
choices regarding the types of regression models that can be used;
hard-coding a speci�c regression method into the library and limiting
or eliminating the ability of the user to modify regression control pa-
rameters. In many instances, there is not a fundamental reason why
a new statistical method should use a speci�c regression method (e.g.,
linear vs. non-linear) and such choices arti�cially limit the general ap-
plication of new packages. In addition, if a new method requires mul-
tiple regression steps, a developer must arti�cially break the method
into multiple function calls, each for a speci�c regression step, or pro-
vide a cumbersome and/or confusing interface. We have developed a
new R package to facilitate the use of existing and future R regression
libraries that simpli�es the development of general, non-model-speci�c
implementations of new statistical methods.

Keywords: Regression and classi�cation

1 Introduction

IMPACT is a joint venture of the University of North Carolina at Chapel
Hill, Duke University, and North Carolina State University. The program

1

project aims to improve the health and longevity of people by improving the
clinical trial process. A key component of this research has been the develop-
ment of public-use software packages that implement new statistical methods
developed by the 30+ investigators. Whenever possible, these methods have
been developed in R. The modelObj library was born from the need to cre-
ate simple, general-use implementations of new statistical methods that do
not limit the underlying regression method(s) and do not require continued
upgrading as new regression methods become available.

When creating R packages for statistical methods developed on the frame-
work of traditional regression or classi�cation methods, researchers and/or
software developers often make choices regarding the types of models that
can be speci�ed by the user; hard-coding the regression method into the li-
brary and limiting or eliminating the ability of the user to modify regression
control parameters. However, the choice of a speci�c regression method may
not be fundamental constraint of the new method, and such choices can limit
the general application of an implementation.

In addition, a new method may require multiple regression steps. For exam-
ple, DynTxRegime implements the Augmented Inverse Probability Weighted
Estimators (AIPWE) for average treatment e�ects and requires multiple re-
gression analyses. To implement this method generally without using the
framework described herein would require that the procedure be arti�cially
broken into multiple function calls, each for a speci�c regression step, or that
the user interface to the method be cumbersome and/or confusing.

The modelObj library is built on the premise of a �model object." A model
object contains all of the information needed to complete a standard regres-
sion analysis and subsequent prediction step: a formula object, the existing
R regression method to be used to obtain parameter estimates (the so-called
solver method), any control arguments to be passed to the regression method,
the R method to be used to obtain predictions, and any arguments to be
passed to the prediction method. This information is grouped into a single
object of class modelObj by a call to buildModelObj(...). To use a package
built on the model object framework, the user creates the modelObj prior to
calling the statistical method and passes the model object as input. The
modelObj library provides simple functions that developers can use to imple-
ment standard regression procedures, such as fit(...) to obtain parameter
estimates and predict(...) to obtain predictions.

2

2 Interacting with packages that implement the

model object framework.

Users of packages that have been developed based on the model object frame-
work will interface with the modelObj library through calls to buildModelObj(...).
These calls create a model object for a single regression step and are passed
as input to the method. The buildModelObj(...) function takes as input

� model : an object of class formula. Any lhs variables provided will
be ignored. If the �tting function speci�ed in solver.method takes
as input a model matrix rather than a formula object, model will be
used to obtain the model matrix.

� solver.method : an object of class character; the name of the R

regression method. For example, a user might commonly specify `lm'
or `glm.' For classi�cation, `rpart' might be used. The speci�ed

method MUST have a corresponding predict method.

� solver.args : an object of class list; additional arguments to be passed
to solver.method. The name of each element of the list must match a
formal argument of solver.method. For example, for logistic regression
using glm:

solver.method = "glm"

solver.args = list("family"=binomial).

If solver.method takes as input a formula object, it is assumed that
the function speci�ed has formal arguments �formula" and �data." If the
solver.method does not use �formula" and/or �data," solver.args must
explicitly indicate the variable names used for these inputs. For exam-
ple, list(�x"=�formula") if the formula object is passed to solver.method
through input argument �x" or list(�df"=�data") if the data.frame ob-
ject is passed to solver.method through input argument �df."

If solver.method instead takes as input a model matrix, it is assumed
that the function speci�ed has formal arguments �x" and �y" for the
design matrix and response, respectively. If the solver.method does not
use �x" and/or �y," solver.args must explicitly indicate the variable
names used for these inputs. For example, list(�X"=�x") if the for-
mula object is passed to solver.method through input argument �X"

3

or list(�Y"=�y") if the data.frame object is passed to solver.method
through input argument �Y."

� predict.method : an object of class character; the function name
of the R function to be used to obtain predictions. For example, `pre-
dict.lm' or `predict.glm.' If no function is explicitly given, the generic
`predict' method is assumed. Most often, this input can be omitted.

� predict.args : an object of class list; additional arguments to be
passed to predict.method. The name of each element of the list must
match a formal argument of predict.method. For example, if a logistic
regression using glm was used to �t the model formula object and
predictions on the scale of the response are desired,

solver.method = "glm"

solver.args = list("family"=binomial)

predict.method = "predict"

predict.args = list("type"="response").

It is assumed that the R method speci�ed in predict.method has for-
mal arguments �object" and �newdata." If predict.method does not use
these formal arguments, predict.args must explicitly indicate the vari-
able names used for these inputs. For example, list(�x"=�object") if the
object returned by solver.method is passed to predict.method through
input argument �x" or list(�ndf"=�newdata") if the data.frame object
is passed to predict.method through input argument �ndf."

Unless modi�ed through solver.args and predict.args, default settings are
assumed for the methods speci�ed in solver.method and predict.method.

As a simple example,

> library(modelObj)

> object1 <- buildModelObj(model=~x1, solver.method='lm')

de�nes a model object for a linear model, the parameter estimates of which
are to be obtained using lm, and predictions obtained using predict. The
solver and prediction methods will use default settings.

As a more complex (though contrived) example, consider the following func-
tions

4

> mylm <- function(X,Y){

+ obj <- list()

+ obj$lm <- lm.fit(x=X, y=Y)

+ obj$var <- "does something neat"

+ class(obj) = "mylm"

+ return(obj)

+ }

> predict.mylm <- function(obj,data=NULL){

+ if(is(data,"NULL")) {

+ obj <- exp(objlmfitted.values)

+ } else {

+ obj <- data %*% objlmcoefficients

+ obj <- exp(obj)

+ }

+ return(obj)

+ }

which, for the sake of argument, represent a �new" regression method that
a user would like to utilize. These functions are chosen to illustrate solver
methods and prediction methods that do not accept the standard formal
arguments. They provide a simple illustration of how �exible the framework
can be. In this circumstance, the user would de�ne the following modeling
object:

> object2 <- buildModelObj(model = ~x1,

+ solver.method = mylm,

+ solver.args = list('X' = "x", 'Y' = "y"),

+ predict.method = predict.mylm,

+ predict.args = list('obj' = "object",

+ 'data' = "newdata"))

3 Developing packages that implement the model

object framework.

The buildModelObj() function invoked by a user returns an object of class
modelObj.

Developers that use this utility package should carefully document for users

5

any required settings for solver.method and predict.method. For exam-
ple, the scale of the response needed for predictions. Though the developer
can access and modify the argument lists provided by users using methods
predictorArgs() and solverArgs(), there is no strict variable naming con-
vention in R, and some methods do not adhere to the �usual" choices. Thus,
identifying the formal argument to adjust may be tricky.

Once provided an object of class modelObj, developers can **see** all of the
values contained in the object but can modify only the argument lists to be
passed to methods. Speci�cally:

� model Retrieves the formula object.

� solver Retrieves the character name of the regression method.

� solverArgs Retrieves the list of arguments to be passed to the regres-
sion method.

� predictor Retrieves the character name of the prediction method.

� predictorArgs Retrieves the list of arguments to be passed to the
prediction method.

� solverArgs<- Sets the list of arguments to be passed to the regression
method.

� predictorArgs<- Sets the list of arguments to be passed to the pre-
diction method.

The primary utility method available for objects of class modelObj is fit(...),
which implements the regression step. The inputs for fit(...) are:

� object an object of class modelObj.

� data an object of class data.frame; the covariates to be used to obtain
the �t.

� response an object of class numeric; the response

� . . . ignored

The fit(...) method constructs and executes the function call to the spec-
i�ed solver method using the formula object and formal arguments provided
by the user in solver.args. The fit(...) method uses an internal naming

6

convention for the response, and thus only the right-hand-side of the formula
object is referenced.

fit(...) returns an S4 object of class modelObjFit. Developers can access
members of this class using the following methods:

� fitObject Retrieves the value object returned by the regression method.
Through this retrieve method, developers have the ability to access any
de�ned methods for the regression function, such as coef, residuals,
or plot.

� predictor Retrieves the character name of the prediction method to
be used to obtain predictions.

� predictorArgs Retrieves the list of arguments to be passed to the
prediction method when making predictions.

Note that predictor and predictorArgs only give you access to **see** what
has been speci�ed for the prediction method. Should changes need to be
made to the arguments, one must apply these changes to the de�ning mod-
elObj before creating the modelObjFit object.

Additional methods available for modelObjFit objects are

� coef(...) If de�ned for the regression method, returns the estimated
coe�cients.

� plot(...) If de�ned for the regression method, generates the plot of
the model �tting class.

� predict(...) Obtains predictions from the results of the model
�tting function.

� residuals(...) If de�ned for the regression method, returns the resid-
uals.

� show(...) Uses the prede�ned show method of the regression method.

� summary(...) Uses the prede�ned summary method of the regression
method.

Again, the value object returned by the regression method can be retrieved
using fitObject; thereby providing access to any R methods developed for
the regression method. We have chosen to implement only the most common

7

methods (coef(), residuals(), etc.) for the modelObjFit object. Note
that not all regression methods have these functions. If these functions are
required in your implementation, additional checks must be incorporated into
your code to ensure their availability.

4 Example Implementation of modelObj

We use a standard R dataset to illustrate the implementation of the model
object framework. The `pressure' data frame contains �data on the relation
between temperature in degrees Celsius and vapor pressure of mercury in
millimeters (of mercury)." The details of the datatset are not relevant for
this illustration. However, the reader is referred to ?pressure for details.

> summary(pressure)

temperature pressure

Min. : 0 Min. : 0.0002

1st Qu.: 90 1st Qu.: 0.1800

Median :180 Median : 8.8000

Mean :180 Mean :124.3367

3rd Qu.:270 3rd Qu.:126.5000

Max. :360 Max. :806.0000

It is straightforward to implement a regression step. As an example, suppose
we are developing a new package called wow. The primary function of this
package is exampleFun(). In this function, we want to obtain a �t and return
the square of the �tted response and the estimated coe�cients in a list. Our
function takes the following form

> exampleFun <- function(modelObj, data, Y){

+

+ fitObj <- fit(object = modelObj, data = data, response = Y)

+

+ ##Test that coef() is an available method

+ cfs <- try(coef(fitObj), silent=TRUE)

+ if(class(cfs) == 'try-error'){

+ warning("Provided regression method does not have a coef method.\n")

+ cfs <- NULL

+ }

8

+

+ fitted <- predict(fitObj)^2

+

+ return(list("fittedSq"=fitted, "coef"=cfs))

+ }

To use this function, a user must create the object of class modelObj and
provide it as input to exampleFun(). The user can implement a linear model
as follows:

> ylog <- log(pressure$pressure)

> objlm <- buildModelObj(model = ~temperature,

+ solver.method = "lm",

+ predict.method = "predict.lm",

+ predict.args = list("type"="response"))

> fitObjlm <- exampleFun(objlm, pressure, ylog)

> print(fitObjlm$coef)

(Intercept) temperature

-6.06814354 0.03979188

Or, the non-linear least squares method nls:

> objnls <- buildModelObj(model = ~exp(a + b*temperature),

+ solver.method = "nls",

+ solver.args = list('start'=list(a=1, b=0.1)),

+ predict.method = "predict",

+ predict.args = list("type" = "response"))

> fitObjnls <- exampleFun(objnls, pressure, pressure$pressure)

> print(fitObjnls$coef)

a b

-0.67814836 0.02052001

Or, even the previously de�ned �new" method:

> objectnew <- buildModelObj(model = ~temperature,

+ solver.method = mylm,

+ solver.args = list('X' = "x", 'Y' = "y"),

+ predict.method = predict.mylm,

+ predict.args = list('obj'="object",

+ 'data'="newdata"))

9

> fitObjnew <- exampleFun(objectnew, pressure, ylog)

> print(fitObjnew$coef)

NULL

In the last example, the function returned NULL for the parameter estimates
because there is no available method to retrieve the estimated parameters.

The same function, exampleFun() can be used to implement each of these
models, and no development is required to extend the wow function to new
regression methods as they become available.

10

	Introduction
	Interacting with packages that implement the model object framework.
	Developing packages that implement the model object framework.
	Example Implementation of modelObj

