Package: OTRselect (via r-universe)

August 21, 2024

Type Package

Title Variable Selection for Optimal Treatment Decision

Version 1.2

Date 2023-11-24

Author Wenbin Lu, Hao Helen Zhang, Donglin Zeng, Yuan Geng, and Shannon T. Holloway

Maintainer Shannon T. Holloway <shannon.t.holloway@gmail.com>

Description A penalized regression framework that can simultaneously estimate the optimal treatment strategy and identify important variables. Appropriate for either censored or uncensored continuous response.

License GPL-2

Depends stats, lars, survival, methods

NeedsCompilation no

Date/Publication 2023-11-24 17:50:02 UTC

Repository https://sth1402.r-universe.dev

RemoteUrl https://github.com/cran/OTRselect

RemoteRef HEAD

RemoteSha 18f05e6571e65bae065574d56bd1d3c042733967

Contents

																																							0
uncense	ored			•		•	•	•	•		•	•	•	•	•	•	•	•			•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	6
Qhat .																											•	•	•		•		•		•			•	5
censore	ed			•									•													•			•		•				•			•	3
OTRsel	lect-pa	cka	age	e	 •					•	•		•	•	•	•		•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	2

Index

OTRselect-package

Description

A penalized regression framework that can simultaneously estimate the optimal treatment strategy and identify important variables. Appropriate for either censored or uncensored continuous response.

Details

The DESCRIPTION file:

Package:	OTRselect
Type:	Package
Title:	Variable Selection for Optimal Treatment Decision
Version:	1.2
Date:	2023-11-24
Author:	Wenbin Lu, Hao Helen Zhang, Donglin Zeng, Yuan Geng, and Shannon T. Holloway
Maintainer:	Shannon T. Holloway <shannon.t.holloway@gmail.com></shannon.t.holloway@gmail.com>
Description:	A penalized regression framework that can simultaneously estimate the optimal treatment strategy and i
License:	GPL-2
Depends:	stats, lars, survival, methods
NeedsCompilation:	no

Index of help topics:

OTRselect-package	Variable Selection for Optimal Treatment
	Decision
Qhat	Mean Response or Restricted Mean Response Given
	a Treatment Regime
censored	Variable Selection for Optimal Treatment
	Decision with Censored Survival Times
uncensored	Variable Selection for Optimal Treatment
	Decision with Uncensored Continuous Response

Function censored performs variable selection for censored continuous response. Function uncensored performs variable selection for uncensored continuous response. Function Qhat estimates the restricted mean response given a treatment regime for censored data or the mean response given a treatment regime for uncensored data.

Author(s)

Wenbin Lu, Hao Helen Zhang, Donglin Zeng, Yuan Geng, and Shannon T. Holloway Maintainer: Shannon T. Holloway <shannon.t.holloway@gmail.com>

censored

References

Lu, W., Zhang, H. H., and Zeng. D. (2013). Variable selection for optimal treatment decision. Statistical Methods in Medical Research, 22, 493–504. PMCID: PMC3303960.

Geng, Y., Lu, W., and Zhang, H. H. (2015). On optimal treatment regimes selection for mean survival time. Statistics in Medicine, 34, 1169–1184. PMCID: PMC4355217.

censored	Variable Selection for Optimal Treatment Decision with Censored Sur-
	vival Times

Description

A penalized regression framework that can simultaneously estimate the optimal treatment strategy and identify important variables when the response is continuous and censored. This method uses an inverse probability weighted least squares estimation with adaptive LASSO penalty for variable selection.

Usage

Arguments

х	Matrix or data.frame of model covariates.
У	Vector of response. Note that this data is used to estimate the Kaplan-Meier Curve and should not be $\log(T)$.
а	Vector of treatment received. Treatments must be coded as integers or numerics that can be recast as integers without loss of information.
delta	Event indicator vector. The indicator must be coded as 0/1 where 0=no event and 1=event.
propen	Vector or matrix of propensity scores for each treatment. If a vector, the propensity is assumed to be the same for all samples. Column or element order must correspond to the sort order of the treatment variable, i.e., $0,1,2,3,$ If the number of columns/elements in propen is one fewer than the total number of treatment options, it is assumed that the base or lowest valued treatment has not been provided.
phi	A character {'c' or 'l'} indicating if the constant ('c') or linear ('l') baseline mean function is to be used.
logY	TRUE/FALSE indicating if log(y) is to be used for regression.
intercept	TRUE/FALSE indicating if an intercept is to be included in phi model.

censored

Value

A list object containing

beta	A vector of the estimated regression coefficients after variable selection.
optTx	The estimated optimal treatment for each sample.

Author(s)

Wenbin Lu, Hao Helen Zhang, Yuan Geng, and Shannon T. Holloway

References

Geng, Y., Lu, W., and Zhang, H. H. (2015). On optimal treatment regimes selection for mean survival time. Statistics in Medicine, 34, 1169–1184. PMCID: PMC4355217.

Examples

```
sigma <- diag(10)</pre>
ct <- 0.5^{1L:9L}
rst <- unlist(sapply(1L:9L,function(x){ct[1L:{10L-x}]}))</pre>
sigma[lower.tri(sigma)] <- rst</pre>
sigma[upper.tri(sigma)] <- t(sigma)[upper.tri(sigma)]</pre>
M <- t(chol(sigma))</pre>
Z <- matrix(rnorm(1000),10,100)</pre>
X <- t(M%*%Z)
A <- rbinom(100,1,0.5)
Y <- rweibull(100, shape=0.5, scale=1)</pre>
C <- rweibull(100, shape=0.5, scale=1.5)</pre>
delta <- as.integer(C <= Y)</pre>
Y[delta > 0.5] <- C[delta>0.5]
dat <- data.frame(X,A,exp(Y),delta)</pre>
colnames(dat) <- c(paste("X",1:10,sep=""),"a","y","del")</pre>
censored(x = X,
          y = Y,
          a = A,
          delta = delta,
          propen = 0.5,
          phi = "c",
          logY = TRUE,
          intercept = TRUE)
```

Qhat

Qhat

Mean Response or Restricted Mean Response Given a Treatment Regime

Description

Estimates the mean response given a treatment regime if data is uncensored. If data is censored, estimates the restricted mean response given a treatment regime.

Usage

Qhat(y, a, g, wgt = NULL)

Arguments

У	vector of responses. Note if logY = TRUE in censored, this value should also be the logarithm.
а	vector of treatments received.
g	vector of the given treatment regime.
wgt	weights to be used if response is censored.

Value

Returns the estimated mean response or restricted mean response.

Author(s)

Wenbin Lu, Hao Helen Zhang, Donglin Zeng, Yuan Geng, and Shannon T. Holloway

References

Lu, W., Zhang, H. H., and Zeng. D. (2013). Variable selection for optimal treatment decision. Statistical Methods in Medical Research, 22, 493–504. PMCID: PMC3303960.

Geng, Y., Lu, W., and Zhang, H. H. (2015). On optimal treatment regimes selection for mean survival time. Statistics in Medicine, 34, 1169–1184. PMCID: PMC4355217.

Examples

y <- rnorm(100)
a <- rbinom(100,1,0.5)
g <- integer(100)
Qhat(y = y, a = a, g = g)</pre>

uncensored

Description

A penalized regression framework that can simultaneously estimate the optimal treatment strategy and identify important variables when the response is continuous and not censored. This method uses an inverse probability weighted least squares estimation with adaptive LASSO penalty for variable selection.

Usage

uncensored(x, y, a, propen, phi, intercept = TRUE)

Arguments

х	Matrix or data.frame of model covariates.
У	Vector of response. Note that this data is used to estimate the Kaplan-Meier Curve and should not be $\log(T).$
а	Vector of treatment received. Treatments must be coded as integers or numerics that can be recast as integers without loss of information.
propen	Vector or matrix of propensity scores for each treatment. If a vector, the propensity is assumed to be the same for all samples. Column or element order must correspond to the sort order of the treatment variable, i.e., $0,1,2,3,$ If the number of columns/elements in propen is one fewer than the total number of treatment options, it is assumed that the base or lowest valued treatment has not been provided.
phi	A character {'c' or 'l'} indicating if the constant ('c') or linear ('l') baseline mean function is to be used.
intercept	TRUE/FALSE indicating if an intercept is to be included in phi model.

Value

 A list object containing

 beta
 A vector of the estimated regression coefficients after variable selection.

 optTx
 The estimated optimal treatment for each sample.

Author(s)

Wenbin Lu, Hao Helen Zhang, Donglin Zeng, and Shannon T. Holloway

References

Lu, W., Zhang, H. H., and Zeng. D. (2013). Variable selection for optimal treatment decision. Statistical Methods in Medical Research, 22, 493–504. PMCID: PMC3303960.

uncensored

Examples

```
sigma <- diag(10)</pre>
ct <- 0.5^{1L:9L}
rst <- unlist(sapply(1L:9L,function(x){ct[1L:{10L-x}]}))</pre>
sigma[lower.tri(sigma)] <- rst</pre>
sigma[upper.tri(sigma)] <- t(sigma)[upper.tri(sigma)]</pre>
M <- t(chol(sigma))</pre>
Z <- matrix(rnorm(1000),10,100)</pre>
X <- t(M %*% Z)
gamma1 <- c(1, -1, rep(0,8))
beta <- c(1,1,rep(0,7), -0.9, 0.8)
A <- rbinom(100,1,0.5)
Y <- 1.0 + X %*% gamma1 +
     A*{cbind(1.0,X)%*%beta} + rnorm(100,0,.25)
dat <- data.frame(X,A,Y)</pre>
uncensored(x=X,
           y = Y,
           a = A,
           propen = 0.5,
           phi = "c",
            intercept = TRUE)
```

Index

* package
OTRselect-package, 2

 ${\tt censored, 3}$

OTRselect (OTRselect-package), 2 OTRselect-package, 2

Qhat, 5

uncensored, 6